CS445 Computational Photography

Linear Algebra Review

By Yuanyi Zhong

Original slides by Yuan Shen

- Goals of this session:
- Know systems of linear equations in matrix form
- know basic linear algebra notations (vectors and matrices)
- Know matrix properties (norm, inverse, pseudo-inverse, transpose, rank, eigenvalue, and etc.)
- Know how to setup systems of linear equations and solve them
- Know how to get SVD decomposition of a matrix
- (Eric on Friday) Know how to use Jupyter notebook, numpy
- Reading Material for Linear algebra
- http://cs229.stanford.edu/summer2019/cs229-linalg.pdf
- YouTube channel (3Blue1Brown) with visualization:
- https://www.youtube.com/channel/ UCYO jab esuFRV4b17AJtAw
- CS 357 course website:
- https://relate.cs.illinois.edu/course/cs357-s19/page/ schedule/
- System of Linear Equations in Matrix Form

$$
\begin{aligned}
4 x_{1}-5 x_{2} & =-13 \\
-2 x_{1}+3 x_{2} & =9 .
\end{aligned}
$$

- System of Linear Equations in Matrix Form

$$
\begin{gathered}
4 x_{1}-5 x_{2}=-13 \\
-2 x_{1}+3 x_{2}=9 \\
A x=b \\
A=\left[\begin{array}{cc}
4 & -5 \\
-2 & 3
\end{array}\right], \quad b=\left[\begin{array}{c}
-13 \\
9
\end{array}\right]
\end{gathered}
$$

- System of Linear Equations in Matrix Form

$$
\begin{gathered}
4 x_{1}-5 x_{2}=-13 \\
-2 x_{1}+3 x_{2}=9 \\
A x=b \\
A=\left[\begin{array}{cc}
4 & -5 \\
-2 & 3
\end{array}\right], \quad b=\left[\begin{array}{c}
-13 \\
9
\end{array}\right]
\end{gathered}
$$

- System of Linear Equations in Matrix Form

$$
\begin{gathered}
-2 x_{1}+3 x_{2}=9 \\
4 x_{1}-5 x_{2}= \\
A x=b \\
A=\left[\begin{array}{cc}
-2 & 3 \\
4 & -5
\end{array}\right], \quad b=\left[\begin{array}{c}
9 \\
-13
\end{array}\right]
\end{gathered}
$$

- Quiz
- If we know a square matrix $A \in R^{n \times n}$ has n linearly independent eigenvectors, then which of the following is/are true:
A. The matrix is full ranked
B. The matrix is invertible
C. The matrix is diagonalizable
D. The determinant of A is not equal to 0
E. The number 0 is not an eigenvalue of A
- Basic Notations:
- The i-th element of a vector x is denoted x_{i}

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$ columns

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Vector

- Vector Norm
- A norm of a vector $\|x\|$ is informally a measure of the "length" of the vector.
- In particular, 12-norm or Euclidean norm is as follows:

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} .
$$

- Vector-vector inner product

For inner product, x and y should have the same dimension

Given two vectors $x, y \in \mathbb{R}^{n}$, the quantity $x^{T} y$, sometimes called the inner product or dot product of the vectors, is a real number given by

$$
x^{T} y \in \mathbb{R}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{n} x_{i} y_{i}
$$

- Vector-vector outer-product

For outer product, x and y do not have to be in the same dimension

Given vectors $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$ (not necessarily of the same size), $x y^{T} \in \mathbb{R}^{m \times n}$ is called the outer product of the vectors. It is a matrix whose entries are given by $\left(x y^{T}\right)_{i j}=x_{i} y_{j}$, i.e.,

$$
x y^{T} \in \mathbb{R}^{m \times n}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \cdots & x_{2} y_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m} y_{1} & x_{m} y_{2} & \cdots & x_{m} y_{n}
\end{array}\right] .
$$

Matrix

- Matrix Multiplication

Dimension must match!

The product of two matrices $A \in \mathbb{R}^{m}{ }^{n}$ and $B \in \mathbb{R}^{n}$ p is the matrix

$$
C=A B \in \mathbb{R}^{m \times p}
$$

where

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j} .
$$

- Matrix Properties

- Matrix multiplication is associative: $(A B) C=A(B C)$.
- Matrix multiplication is distributive: $A(B+C)=A B+A C$.
- Matrix multiplication is, in general, not commutative; that is, it can be the case that $A B \neq B A$. (For example, if $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times q}$, the matrix product $B A$ does not even exist if m and q are not equal!)

- Matrix Transpose

The following properties of transposes are easily verified:

- $\left(A^{T}\right)^{T}=A$
- $(A B)^{T}=B^{T} A^{T}$
- $(A+B)^{T}=A^{T}+B^{T}$

- Matrix Rank

- Definition: the number of linearly independent columns/rows of A
- For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) \leq \min (m, n)$. If $\operatorname{rank}(A)=\min (m, n)$, then A is said to full rank.

- Matrix Inverse

The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1}, and is the unique matrix such that

$$
A^{-1} A=I=A A^{-1} .
$$

Note that not all matrices have inverses. Non-square matrices, for example, do not have inverses by definition.

- Matrix eigenvalue and eigenvector

We usually normalized the norm of eigenvector so
 $$
\text { that, }\|v\|_{2}=1
$$

Given a square matrix $A \in \mathbb{R}^{/ \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A and $x \in \mathbb{C}^{n}$ is the corresponding eigenvector ${ }^{4}$ if

$$
A x=\lambda x, \quad x \neq 0 .
$$

- The determinant of A is equal to the product of its eigenvalues,

$$
|A|=\prod_{i=1}^{n} \lambda_{i}
$$

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 2
\end{array}\right] .
$$

- Diagonalizable Matrices
- Definition: For a matrix $A \in R^{n \times n}$, if A has n linearly independent eigenvectors, then A is said to be diagonalizable. In other words,

$$
A=U D U^{-1}
$$

Also known as Eigendecomposition, spectral decomposition.

- Diagonalizable Matrices
- Definition: For a matrix $A \in R^{n \times n}$, if A has n linearly independent eigenvectors, then A is said to be diagonalizable. In other words,

$$
\begin{aligned}
& A=U D U^{-1} \\
& \text { From CS357 spring } 2019
\end{aligned}
$$

$$
\begin{aligned}
& A u_{n}=\lambda u_{n} \\
& \underset{=}{A} \underset{=}{U}=\underset{=}{\operatorname{D}} \rightarrow A=\underset{=}{\bigcup_{V}} \bigcup^{-1} \\
& \text { Similarity } \\
& \text { transformation } \\
& \text { of A }
\end{aligned}
$$

U^{-1} exists \Leftarrow Note: U is non-sinqular since eigenvectors are Linearly indep.

- Quiz
- If we know a square matrix $A \in R^{n \times n}$ has n linearly independent eigenvectors, then which of the following is/are true:
A. The matrix is full ranked
B. The matrix is invertible
C. The matrix is diagonalizable
D. The determinant of A is not equal to 0
E. The number 0 is not an eigenvalue of A
- Matrix Singular Value Decomposition
- Definition: factorization a real (or complex) matrix into three matrices.
- $A=U \Sigma V^{T}$, where U and V are orthogonal matrices, and Σ is diagonal matrix.
- Orthogonal (orthonormal) matrix: a real square matrix whose columns and rows are orthogonal unit vectors. The inverse of an orthogonal matrix is its transpose.
- Applications: pseudoinverse, PCA, etc.
- How to calculate the decomposed matrices?

$$
\begin{aligned}
& A=U \Sigma V^{T}, A^{T}=V \Sigma U^{T} \\
& A^{T} A=V \Sigma^{T} U^{T} U \Sigma V^{T} \\
& A^{T} A=V \Sigma^{T} \Sigma V^{T} \\
& \text { Let } D=\Sigma^{T} \Sigma \\
& A^{T} A=V D V^{T} \text { (diagonalization), }
\end{aligned}
$$

> It is in the form of diagonalization! It then indicates that V is the eigenvectors of $A^{T} A$, and the square root of D gives us the value of Σ

- Matrix Singular Value Decomposition (not reduced)

