Looking Back, Moving Forward

Computational Photography Yuxiong Wang, University of Illinois

Slides adopted from Derek Hoiem

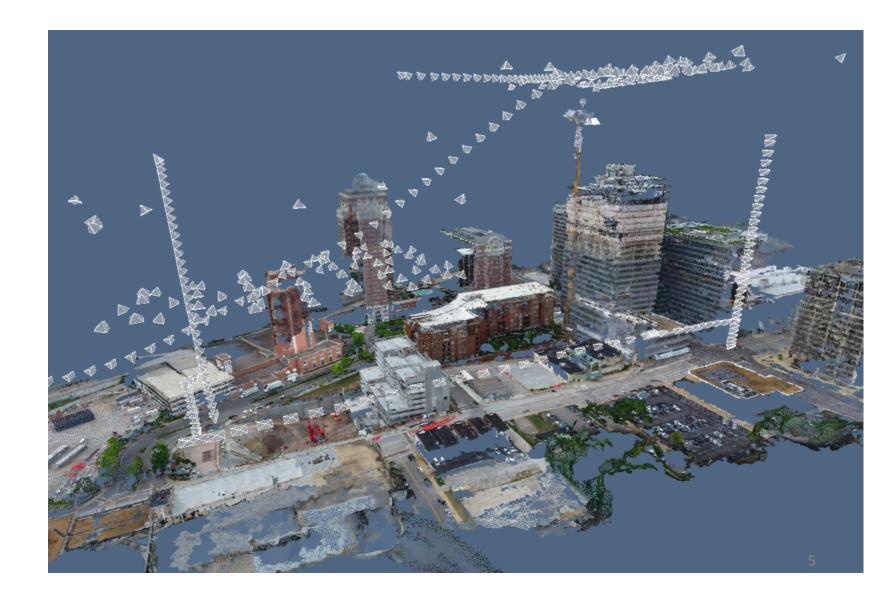
Today

- Requested topics
 - 3D reconstruction
 - Light transport
 - Event cameras

• Beyond this class...

This course has provided fundamentals

- How photographs are captured from and relate to the 3D scene
- How to think of an image as: a signal to be processed, a graph to be searched, an equation to be solved
- How to manipulate photographs: cutting, growing, compositing, morphing, stitching
- Basic principles of computer vision: filtering, correspondence, alignment


What else is out there?

Lots!

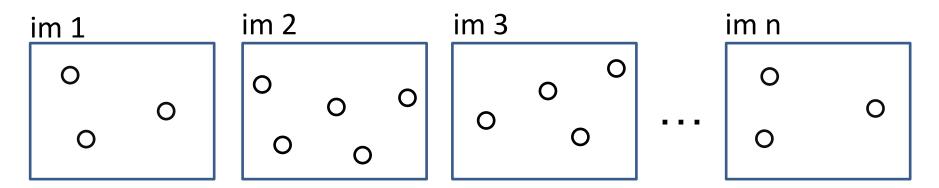
- Machine learning
- Videos and motion
- 3D reconstruction
- Scene understanding
- Better/cheaper devices

How to create 3D model from multiple images

- 1. Solve for camera poses
- Propose and verify 3D points by matching
- 3. Fit a surface to the points

Incremental Structure from Motion (SfM)

Goal: Solve for camera poses and 3D points in scene

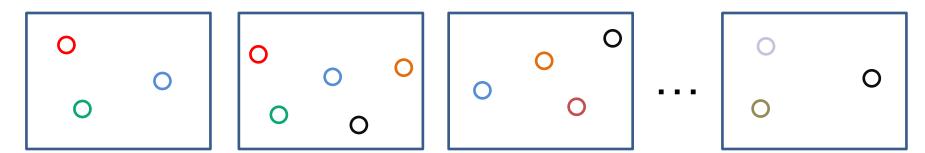


Incremental SfM

- 1. Compute features
- 2. Match images
- 3. Reconstruct
 - a) Solve for pose and 3D points in two cameras
 - b) Solve for pose of additional camera(s) that observe reconstructed 3D points
 - Solve for new 3D points that are viewed in at least two cameras
 - d) Bundle adjust to minimize reprojection error

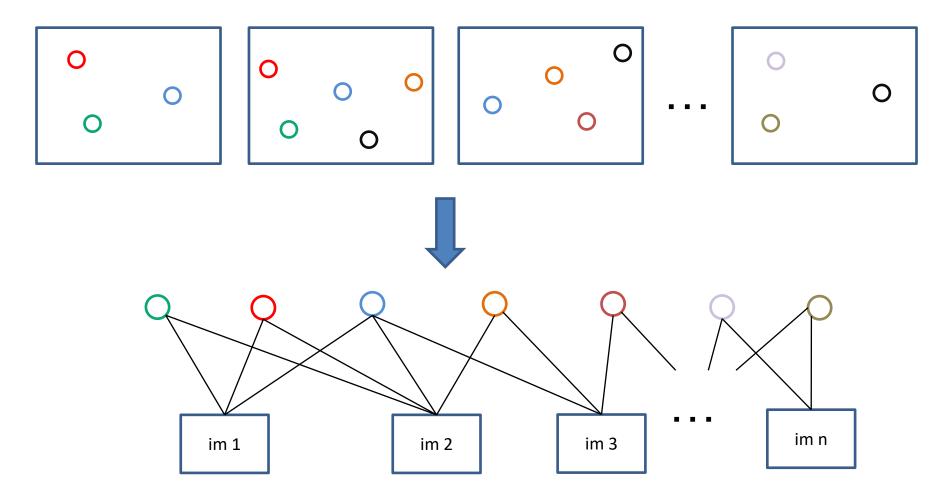
Incremental SFM: detect features

• Feature types: SIFT, ORB, Hessian-Laplacian, ...



Each circle represents a set of detected features

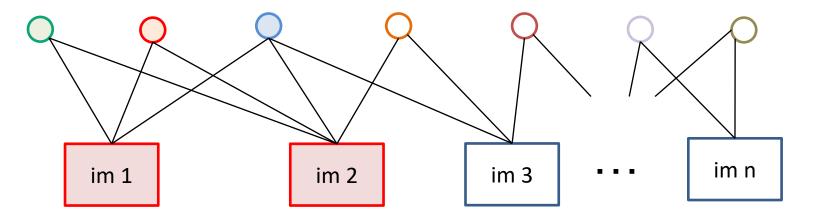
Incremental SFM: match features and images


For each pair of images:

- 1. Match feature descriptors via approximate nearest neighbor and apply Lowe's ratio test
- 2. Solve for F and find inlier feature correspondences
- Speed tricks
 - Use vocabulary tree to get image match candidates
 - Use GPS coordinates to get match candidates, if available

Points of same color have been matched to each other

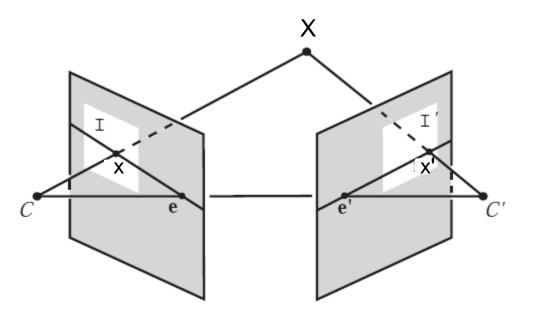
Incremental SFM: create tracks graph


tracks graph: bipartite graph between observed 3D points and images

Incremental SFM: initialize reconstruction

1. Choose two images that are likely to provide a stable estimate of relative pose

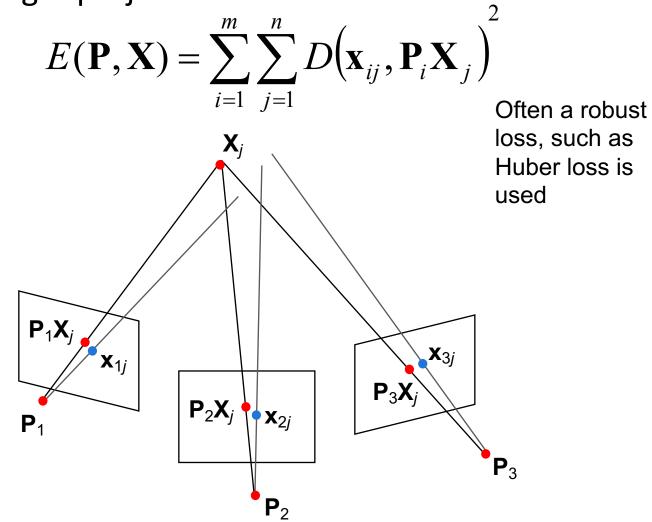
- E.g.,
$$\frac{\# \text{ inliers for } H}{\# \text{ inliers for } F}$$
 < 0.7 and many inliers for F


- 2. Get focal lengths from EXIF, estimate essential matrix using <u>5</u>point algorithm, extract pose R_2 , t_2 with $R_1 = I$, $t_1 = 0$
- 3. Solve for 3D points given poses
- 4. Perform bundle adjustment to refine points and poses

filled circles = "triangulated" points filled rectangles = "resectioned" images (solved pose)

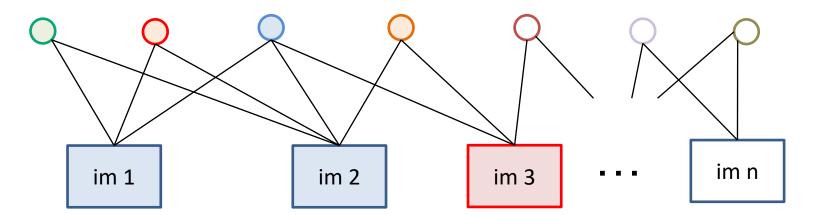
Triangulation: Linear Solution

- Generally, rays C→x and C'→x' will not exactly intersect
- Can solve via SVD, finding a least squares solution to a system of equations



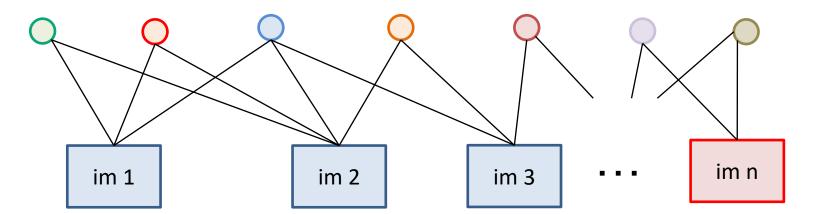
$$\mathbf{x} = \mathbf{P}\mathbf{X} \qquad \mathbf{x}' = \mathbf{P}'\mathbf{X}$$
$$\mathbf{A}\mathbf{X} = \mathbf{0} \qquad \mathbf{A} = \begin{bmatrix} u\mathbf{p}_3^T - \mathbf{p}_1^T \\ v\mathbf{p}_3^T - \mathbf{p}_2^T \\ u'\mathbf{p}_3'^T - \mathbf{p}_2'^T \\ v'\mathbf{p}_3'^T - \mathbf{p}_2'^T \end{bmatrix}$$

Further reading: Hartley-Zisserman p. 312-313


Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing reprojection error

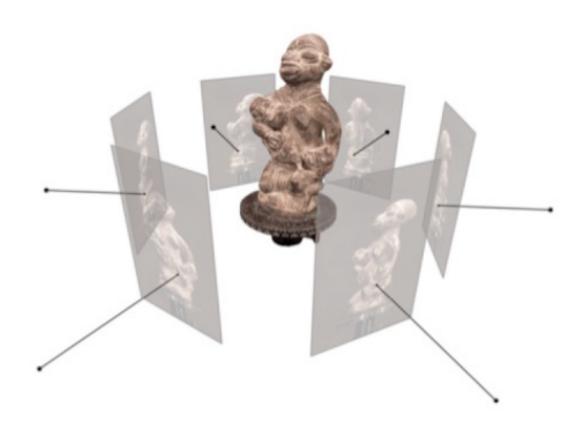
Incremental SFM: grow reconstruction


- 1. Resection: solve pose for image(s) that have the most triangulated points
- 2. Triangulate: solve for any new points that have at least two cameras
- 3. Remove 3D points that are outliers
- 4. Bundle adjust
 - For speed, only do full bundle adjust after some percent of new images are resectioned
- 5. Optionally, align with GPS from EXIF or ground control points (GCP)

filled circles = "triangulated" points filled rectangles = "resectioned" images (solved pose)

Incremental SFM: grow reconstruction

- 1. Resection: solve pose for image(s) that have the most triangulated points
- 2. Triangulate: solve for any new points that have at least two cameras
- 3. Remove 3D points that are outliers
- 4. Bundle adjust
 - For speed, only do full bundle adjust after some percent of new images are resectioned
- 5. Optionally, align with GPS from EXIF or ground control points (GCP)



filled circles = "triangulated" points filled rectangles = "resectioned" images (solved pose)

Important recent papers and methods for SfM

- <u>Snavely thesis (2008)</u>: intro to SfM in Chapter 3
- Visual SfM: <u>Visual SfM (Wu 2013)</u>
 - Used to be the best incremental SfM software (but not anymore and closed source); paper still very good
- <u>COLMAP</u>
 - Good open source system based on <u>"Structure-from-motion</u> <u>revisited</u>" (Schonberger Frahm 2016)
- <u>OpenSfM</u>:
 - Python open-source system, easy to read and modify

Multiview Stereo: propose and verify 3D points by matching pixel patches across images

Select depth at each pixel that minimizes NCC of patches with other images

Key Assumptions

- Enough texture to match
- Surface looks the same from each view (nonreflective)

Multiview Stereo: recommended reading

"Multiview Stereo: a tutorial" by Yasu Furukawa https://drive.google.com/file/d/1rPHk0dyAfjh-1wuwQShFm-qtiUScPxz/view

COLMAP:

 Code based on "Pixelwise View Selection for Unstructured Multi-View Stereo" by Schonberger et al. 2016

Surface Reconstruction

Floating scale surface reconstruction:

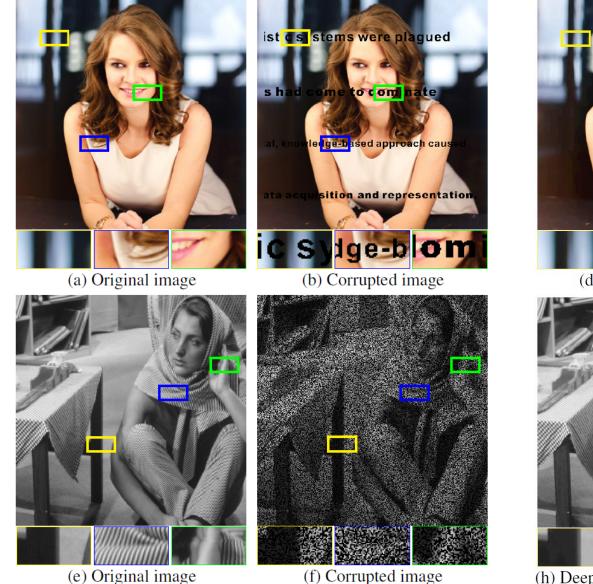
http://www.gcc.tu-darmstadt.de/home/proj/fssr/

Constrained Delaunay triangulation

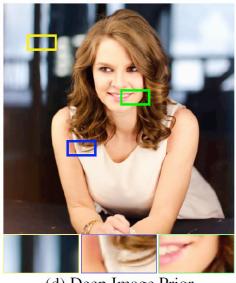
- Create 3D triangulation of dense points and remove faces that conflict with observed points

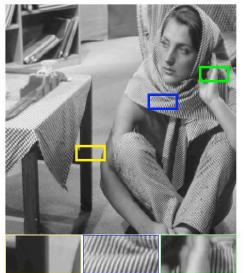
Deep Image Prior

CVPR 2018


Dmitry Ulyanov Skolkovo Institute of Science and Technology, Yandex dmitry.ulyanov@skoltech.ru Andrea Vedaldi University of Oxford vedaldi@robots.ox.ac.uk Victor Lempitsky Skolkovo Institute of Science and Technology (Skoltech) lempitsky@skoltech.ru

Surprising result: A randomly initialized decoder network, when trained to reproduce a corrupted image, fixes the noise, holes, etc.


The network structure acts as a prior!


Magic or math? Gradient descent on encoder network to reproduce Original produces a cleaner image. Even better than recent methods designed to solve this problem.

(f) Corrupted image

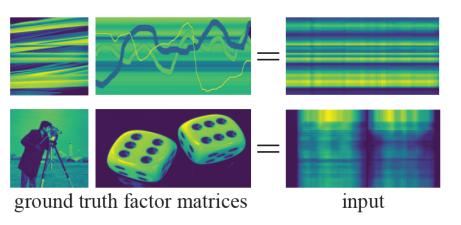
(d) Deep Image Prior

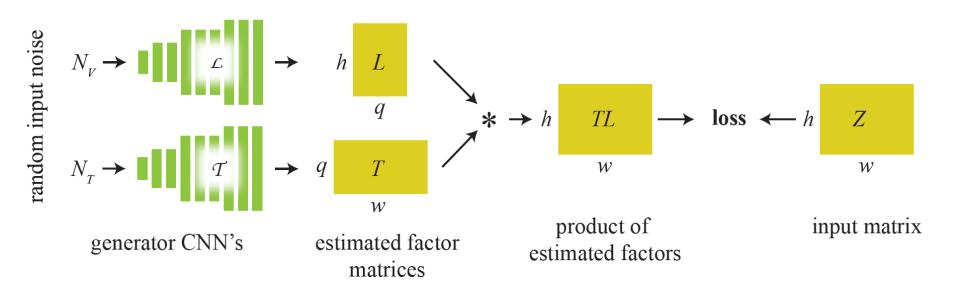
(h) Deep Img. Prior, PSNR = 32.22

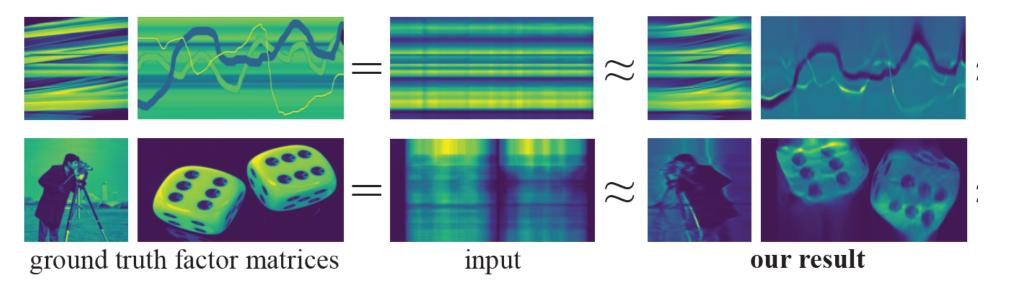
Computational Mirrors: Blind Inverse Light Transport by Deep Matrix Factorization

NeurIPS 2019

Miika Aittala	Prafull Sharma	Lukas Murmann	Adam B. Yedidi a
MIT	MIT	MIT	MIT
miika@csail.mit.edu	prafull@mit.edu	lmurmann@mit.edu	ı adamy@mit.edu
Gregory W. Wornel	ll William T.		Frédo Durand
MIT	MIT, Googl		MIT


billf@mit.edu


fredo@mit.edu


Now take it a step further. If you have the product of two images, you can recover the factors.

gww@mit.edu

Note: there are practically infinitely many useless solutions to this problem.

- Each "pixel" of light on the projector lights the scene, producing an image
- The total image is the sum of images from each pixel.
- Observed image can be factorized into surface colors and projected image (assuming no ambient light)

https://www.youtube.com/watch?v=bzsfREU2dDM

Event cameras

- First commercially produced in 2008
- Respond only when individual pixels change intensity
 - Corresponds to camera or scene motion
- 1 micro-second latency
- High dynamic range
- 100x less power than standard camera

Overview: https://www.youtube.com/watch?v=LauQ6LWTkxM 3D Reconstruction: https://www.youtube.com/watch?v=fA4MiSzYHWA

- Handwriting beautification (Zitnick SG'13)
 - Example of user assistance

• <u>Semantic image synthesis</u> (Park et al. CVPR 2019)

Trends and Future of Computational Photography

- Camera phones continue to serve as a platform for latest advances in hardware and software
 - Depth may be commonly available
- VR / AR blend graphics with tracking and understanding of environment
 - Killer app outside of games and teleconferencing?
- Design smart programs that work together with people
 - This is #1 from Harry Shum, Exec VP of AI and Research at Microsoft

How can you learn more?

- Relevant courses
 - Production graphics (CS 419)
 - Machine learning (CS 446 and others)
 - Deep learning
 - Computer vision (CS 543)
 - Optimization methods (CS 544)
 - Parallel processing / GPU
 - HCI, data mining, NLP, robotics

How can you learn more?

- Conference proceedings
 - Vision: CVPR, ICCV, ECCV, NeurIPS
 - Computational photography: <u>ICCP</u>
 - Graphics: SIGGRAPH, SIGGRAPH Asia

Computer Vision

Similar stuff to CP

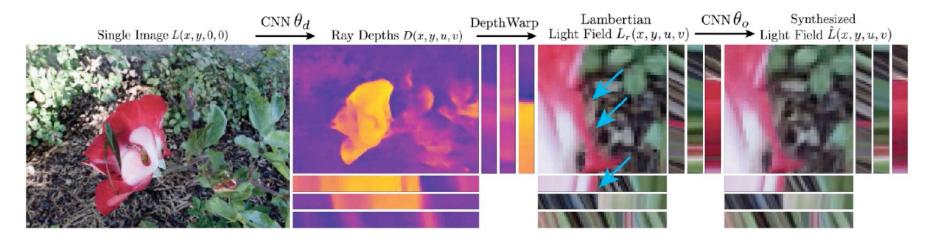
• Camera models, filtering, single-view geometry, light and capture

New stuff

- Mid-level vision
 - Edge detection, clustering, segmentation
- Machine learning
- Recognition
 - Image features and classifiers
 - Object category recognition
 - Action/activity recognition
- Videos
 - Tracking, optical flow
 - Structure from motion
- Multi-view geometry

How do you learn more?

Explore and fiddle!


Thank you!

ICES forms

Image → Light Field

Learning to Synthesize a 4D RGBD Light Field from a Single Image

Pratul P. Srinivasan¹, Tongzhou Wang¹, Ashwin Sreelal¹, Ravi Ramamoorthi², Ren Ng¹ ¹University of California, Berkeley ²University of California, San Diego

https://www.youtube.com/watch?v=yLCvWoQLnms

Superresolution

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis

Mehdi S. M. Sajjadi Bernhard Schölkopf Michael Hirsch

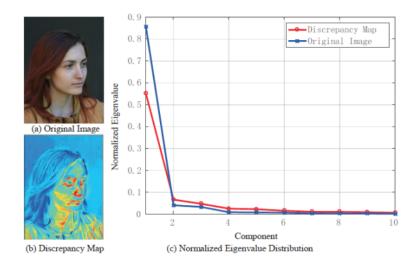

Bicubic

ENet-E

ENet-PAT

Ground Truth

E: Optimize least squares objective with upsampling network PAT: Optimize "perceptual" (VGG features) loss, adversarial loss, texture corr loss


Pretty similar to above, more limited domain

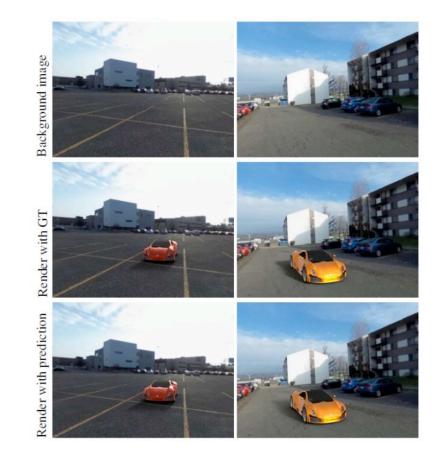

Xiangyu Xu^{1,2,3} Deqing Sun^{3,4} Jinshan Pan⁵ Yujin Zhang¹ Hanspeter Pfister³ Ming-Hsuan Yang² ¹Tsinghua University ²University of California, Merced ³Harvard University ⁴Nvidia ⁵Nanjing University of Science & Technology

De-beautification

Makeup-Go: Blind Reversion of Portrait Edit*

Ying-Cong Chen¹ Xiaoyong Shen² Jiaya Jia^{1,2} ¹The Chinese University of Hong Kong ²Tencent Youtu Lab ycchen@cse.cuhk.edu.hk dylanshen@tencent.com leojia9@gmail.com

Network regresses principal components of discrepancy map


Learning High Dynamic Range from Outdoor Panoramas

Jinsong Zhang Jean-François Lalonde Université Laval, Québec, Canada jinsong.zhang.l@ulaval.ca, jflalonde@gel.ulaval.ca http://www.jflalonde.ca/projects/learningHDR

 Regress HDR from one LDR image

LDR --> HDR

- Train on synthetic data
- Limited to outdoor scenes, rotated so that sun is on top

Smarter user assistance

• Handwriting beautification (Zitnick SG'13)

• <u>3D object modeling</u> (Chen et al. SGA'13)

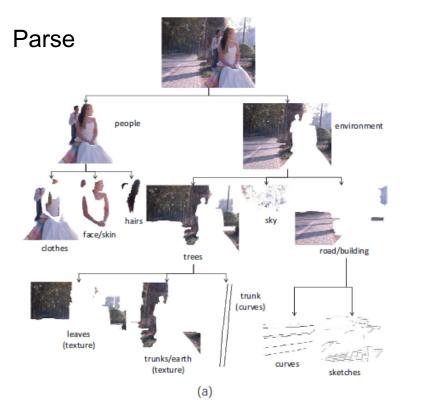
• <u>3D object modeling</u> (Kholgade et al. SG'14)

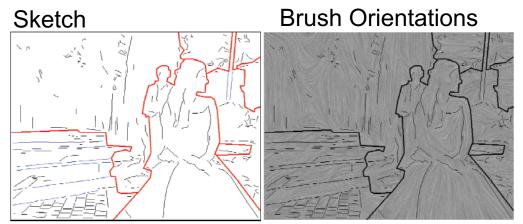
Video and motion

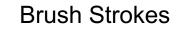
- Video = sequence of images
 - Track points → optical flow, tracked objects, 3D reconstruction
 - Find coherent space-time regions \rightarrow segmentation
 - Recognizing actions and events
- Examples:
 - Point tracking for structure-from-motion
 - <u>Boujou 1</u>
 - Facial transfer: Xu et al. SG2014

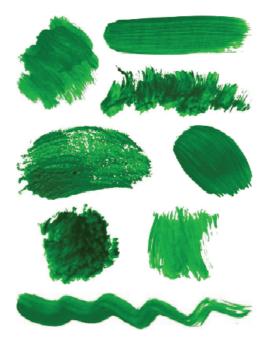
Scene understanding

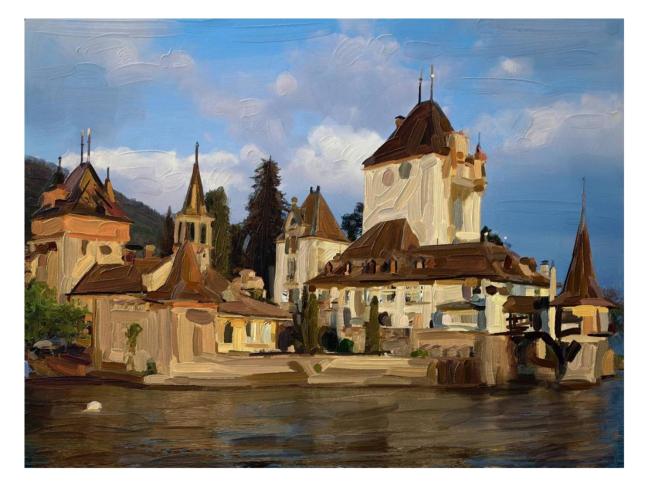
Interpret image in terms of scene categories, objects, surfaces, interactions, goals, etc.


• Find me images with only Alyosha and Piotro


Scene understanding


- Mostly unsolved, but we're getting there (especially for graphics purposes)
- Examples
 - "From Image Parsing to Painterly Rendering" (Zeng et al. 2010)
 - "<u>Sketch2Photo: Internet Image Montage</u>" (Chen et al. 2009)
 - <u>Editing via scene attributes</u> (Laffont et al. 2014)





Zeng et al. SIGGRAPH 2010

Zeng et al. SIGGRAPH 2010

More examples

- Sketch2photo: <u>http://www.youtube.com/watch?v=dW1Epl2LdFM</u>
- Animating still photographs

Chen et al. 2009

Modeling humans

- Estimating pose and shape
 - <u>http://clothingparsing.com/</u>
 - Parselets (Dong et al., ICCV 2013)

• Motion capture

• <u>3D face from image</u> (Kemelmacher ICCV'13)

Better and simpler 3D reconstruction

MobileFusion (2015): <u>https://youtu.be/8M_-ISYqACo</u>