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Face detection and recognition

{

“Sally”




Applications of Face Recognition

* Digital photography




Applications of Face Recognition

Digital photography
e Surveillance

u Detecting....

Matchmg with Database

Name: Alireza,
N Date: 25 My 2007 15:45
H'- Place: Main corridor

Name: Unknown
Date: 25 My 2007 15:45
Place: Main corridor

® Recording




Applications of Face Recognition

* Digital photography
e Surveillance

* Album organization




Face detection




What does a face look like?




What does a face look like?




What makes face detection hard?

Expression
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What makes face detection hard?

Viewpoint




What makes face detection hard?

Occlusion
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What makes face detection and recognition hard?

Coincidental textures

NS
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Consumer application: iPhoto 2009

* Things iPhoto thinks are faces
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http://www.flickr.com/groups/977532@N24/pool/

How to find faces anywhere in an image?

* Filter Image with a face?
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Train a Filter

Positive Training Images
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Face detection: sliding windows
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Filter/Template

Multiple scales
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What features?

)

Exemplars
(Sung Poggio 1994)

Original Image Wavelet Transform

Edge (Wavelet) Pyramids
(Schneiderman Kanade 1998)

Intensity Patterns (with NNs)
(Rowley Baluja Kanade 1996)

Haar Filters
(Viola Jones 2000)
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How to classify?

* Many ways
— Neural networks
— Adaboost
— SVMs

— Nearest neighbor



Face classifier
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Face Detection: State of the Art

RetinaFace: Single-stage Dense Face Localisation in the Wild

Jiankang Deng * !4 Jia Guo "2 Yuxiang Zhou
Jinke Yu ? Irene Kotsia > Stefanos Zafeiriou'*
Tmperial College London ’InsightFace 3Middlesex University London “FaceSoft
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https://arxiv.ora/pdf/1905.00641v2.pdf



https://arxiv.org/pdf/1905.00641v2.pdf

Precision
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RetinaFace can find around 900 faces (threshold at 0.5) out of the reported 1151 people



Face recognition

“Sally”
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Face recognition

* Typical scenario: few examples per face,
identify or verify test example

 What’s hard: changes in expression,
lighting, age, occlusion, viewpoint

* Basic approaches (all nearest neighbor)

1. Project into a new subspace (or kernel space)
(e.g., “Eigenfaces”=PCA)
2. Measure face features

3. Make 3d face model, compare
shape+appearance (e.g., AAM)



Simple technique

1. Treat pixels as a vector

-

2. Recognize face by nearest neighbor
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State-of-the-art Face Recognizers

* Most recent research focuses on “faces in the
wild”, recognizing faces in normal photos

— Classification: assign identity to face
— Verification: say whether two people are the same

* Important steps
1. Detect
2. Align
3. Represent
4. Classify



DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Yaniv Taigman Ming Yang Marc’Aurelio Ranzato Lior Wolf
Facebook Al Research Tel Aviv University
Menlo Park, CA, USA Tel Aviv, Israel
{vaniv, mingyang, ranzato}@fb.com wolf@cs.tau.ac.il
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Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d

Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

DeepFace: Closing the Gap to Human-Level Performance in Face Verification
Taigman, Yang, Ranzato, & Wolf (Facebook, Tel Aviv), CVPR 2014

Following slides adapted from Daphne Tsatsoulis
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http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf

Face Alignment

1. Detect a face and 6 fiducial markers using
a support vector regressor (SVR)

2. lteratively scale, rotate, and translate
image until it aligns with a target face

3. Localize 67 fiducial points in the 2D aligned
crop

4. Create a generic 3D shape model by taking
the average of 3D scans from the USF
Human-ID database and manually annotate

the 67 anchor points

5.Fit an affine 3D-to-2D projection and use it
to frontally warp the face
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Train DNN classifier on aligned faces

Cl: M2: C3: L4: LS: L6: F7:
Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

Architecture (deep neural network classifier)
 Two convolutional layers (with one pooling layer)
* 3 locally connected and 2 fully connected layers
e >120 million parameters

Train on dataset with 4400 individuals, ~1000 images each
e Train to identify face among set of possible people

Face matching (verification) is done by comparing features at last layer
for two faces

>

4:::: -

REPRESENTATION
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true positve rate

1.00
0.99

0.98 [
0.97 [
0.96 [
0.95 [
0.94 I
0.93 i

0.92

0.91

0.90
0

Results: Labeled Faces in the Wild Dataset

Method | Accuracy = SE |  Protocol
Joint Bayesian [6] 0.9242 +-0.0108 restricted
Tom-vs-Pete [4] 0.9330 +0.0128 restricted
High-dim LBP [7] 0.9517 £0.0113 restricted
TL Joint Bayesian [5] | 0.9633 £0.0108 restricted
Human cropped (97.5%) DeepFace-single 0.9592 +0.0029 | unsupervised
DeepFace-ensemble (97.35%) DeepFace-single 0.9700 +0.0028 restricted
DeepFace-single (97.00%) DeepFace-ensemble 0.9715 +0.0027 restricted
— TL Joint Baysian (96.33%) DeepFace-ensemble | 0.9735 £0.0025 | unrestricted
High-dimensional LBP (95.17%) 0.9753

—— Tom-vs-Pete + Attribute (93.30%) Human, cropped
—— combined Joint Baysian (92.42%)

[ 1 L 1 L 1 L 1 " 1 L 1 L 1 L 1 " J

.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

false positive rate

Performs similarly to humans!

(note: humans would do better with uncropped faces)

Experiments show that alignment is crucial (0.97 vs 0.88) and

that deep features help (0.97 vs. 0.91)
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Transforming faces



Figure-centric averages

* Need to Align
* Position
e Scale
* Orientation

Antonio Torralba & Aude Oliva (2002)
Averages: Hundreds of images containing a person are averaged to reveal regularities
in the intensity patterns across all the images.
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How do we average faces?

http://www?2.imm.dtu.dk/~aam/datasets/datasets.html
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http://www2.imm.dtu.dk/~aam/datasets/datasets.html

Morphing

image #1

morphing

image #2
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Cross-Dissolve vs. Morphing

http://www.faceresearch.org/
demos/vector

Images from James Hays

Average of
Appearance Vectors

Average of
Shape Vectors
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http://www.faceresearch.org/demos/vector

Aligning Faces

* Need to Align
* Position
« Scale
* Orientation
« Key-points
* The more key-points,
the finer alignment

Images from Alyosha Efros
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Appearance Vectors vs. Shape Vectors

Appearance Vector of
Vector 200*150*3
Dimensions
o — -
Shape ! Vector of
Vector %* —> 43*2
— Dimensions

B

43 coordinates (x,y)
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Average of two Faces

1.Input face keypoints
2.Pairwise average keypoint coordinates

3.Triangulate the faces
4 .\Warp: transform every face triangle

5.Average the pixels
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Average of multiple faces

1. Warp to mean shape
2. Average pixels

>

http://graphics.cs.cmu.edu/courses/15-463/2004 fall/www/handins/brh/final/

41


http://graphics.cs.cmu.edu/courses/15-463/2004_fall/www/handins/brh/final/

Average Men of the world
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Average Women of the world

CentralAfrican  Burmese Cambodian English Ethiopian Filipino

1
Greek Indian Iranian Irish Israeli ltalian

Peruvian Polish Romanian Russian | Samoan South African
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Subpopulation means

Other Examples:
— Average Kids

— Happy Males
— Etc.

Average kid Average happy male

Average female

L —-——

Average male
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Manipulating faces

How can we make a face look more female/male, young/old,
happy/sad, etc.?

With shape/texture analogies!

Prototype 1

Prototype 2
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Manipulating faces

We can imagine various meaningful directions
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Averaging and transformation demos

http://www.faceresearch.org/demos



http://www.faceresearch.org/demos

State-of-the-art in Face Fakery

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras Samuli Laine Timo Aila
NVIDIA NVIDIA NVIDIA
tkarras@nvidia.com slaineldnvidia.com taila@nvidia.com

CVPR 2019 (Best Paper Honorable Mention)
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Making people say what you want

Synthesizing Obama: Learning Lip Sync from Audio

SUPASORN SUWAJANAKORN, STEVEN M. SEITZ, and IRA KEMELMACHER-SHLIZERMAN, University
of Washington

Output Obama Video

Fig. 1. Given input Obama audio and a reference video, we synthesize photorealistic, lip-synced video of Obama speaking those words.
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SIGGRAPH 2017



Input audio ' ’ ”

l 1. Recurrent Neural Network

@@'

Mouth texture

Target video @

@I@M

‘ 4. Final Composite
é 5

Final output @

Sparse shape

l 2. Mouth Synthesis

3. Re-timing
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Human Perception



Result 1

» Humans can recognize faces in extremely low
resolution images.
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Result 3

» High—-frequency information by itself does
lead to good face recognition performance

not
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Result 5

» Eyebrows are among the most important for
recognition

56



Result 8

» Vertical inversion dramatically reduces
recognition performance
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Result 20

» Human memory for briefly seen faces 1is
poor

rather
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Things to remember

e Face Detection: train face vs. non-face model and scan over
multi-scale image

* Face Recognition: detect, align, compute features, and
compute similarity

* Represent faces with an appearance vector and a shape
vector

* Can transform faces by moving shape vector in a given
direction and warping

* Deep network methods enable more flexible mixing and
generation



Next lectures

* Motion magnification

e Cutting edge



Old slides



How to represent variations?
* Training images
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The space of all face images

e Eigenface idea: construct a low-dimensional linear
subspace that best explains the variation in the set
of face images

o’;'..' oo
/4
P e O

7 >
Pixel value 1

Pixel value 2

@ A face image
® A (non-face) image
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PCA

* General dimensionality reduction technique

* Finds major directions of variation

* Preserves most of variance with a much more
compact representation

— Lower storage requirements (eigenvectors + a few
numbers per face)

— Faster matching/retrieval



Principal Component Analysis

* Given a pointset {B;};=1..p ,inan mM-dim
space, PCA finds a basis such that
— The most variation is in the first basis vector

— The second most, in the second vector that is
orthogonal to the first vector

— The third...
y o 2" principal Y v A 4
component 1st principal component / u
\Y _— "ril ;17
;ﬁ
>
’ >




Principal Component Analysis (PCA)

e Given: N data points x;, ... ,Xy in R

e \We want to find a new set of features that are
linear combinations of original ones:

u(x;) = u'(x;— p)
(U: mean of data points)

e Choose unit vector u in RY that captures the
most data variance

Forsyth & Ponce, Sec. 22.3.1, 22.3.2



Principal Component Analysis

e Direction that maximizes the variance of the projected data:

N
. 1 T T 1
Maximize  — )  w(x; — )(u(x; —p))
" i=1 “Y~——,—" subject to ||u||=1
Projection of data point
N
= u |:1/NE | (Xf,i — H’)(X-zﬁ — [1)1 u
U= W W,
Covariance matrix of data
= u Xu

The direction that maximizes the variance is the eigenvector associated with the largest
eigenvalue of Z (can be derived using Raleigh’s quotient or Lagrange multiplier)



PCA in MATLAB

x=rand(3,10);%10 3D examples

mu=mean(x,2);

X norm = xX-repmat(mu,[l n]);
X_covariance = X norm*x norm';
[U, E] = elg(x covariance)

0.74 0.07 -0.66 0.27 0 0
0.65 0.10 0.74 0 0.63 0
-0.12 0.99 -0.02 0 0 0.94



Principal Component Analysis

First » < M basis vectors provide an approximate basis that
minimizes the mean-squared-error (MSE) of reconstructing the

original points

Choosing subspace dimension 7. eigenvalues \;

* look at decay of the
eigenvalues as a function of r

« Larger r means lower

expected error in the subspace
data approximation |




Eigenfaces example (PCA of face images)

Top eigenvectors: uy,...Ux
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Visualization of eigenfaces (appearance variation)

Principal component (eigenvector) ui
BF Pl saElmD
=4 3 - _
M + 30kUk
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R AT
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Can represent face in appearance or shape space

Appearance
Vector

Shape
Vector

43 coordinates (x,y)
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First 3 Shape Bases with PCA

Mean appearance

http://graphics.cs.cmu.edu/courses/15-463/2004 fall/www/handins/brh/final/
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http://graphics.cs.cmu.edu/courses/15-463/2004_fall/www/handins/brh/final/

