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Last class: Image Stitching
1. Detect keypoints

2. Match keypoints

3. Use RANSAC to estimate 
homography

4. Project onto a surface and 
blend
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Project 5

1. Align frames to a central frame 

2. Identify background pixels on panorama 

3. Map background pixels back to videos 

4. Identify and display foreground pixels

Lots of possible extensions for extra credit
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Aligning frames
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Background identification
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Background identification

mean

median

mode

Idea 1: take average (mean) pixel 
- Not bad but averages over outliers

Idea 2: take mode (most common) pixel 
- Can ignore outliers if background shows more than 
any other single color

Idea 3: take median pixel 
- Can ignore outliers if background shows at least 50% 
of time, or outliers tend to be well-distributed 
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Identifying foreground

1. Simple method: foreground pixels are some 
distance away from background

2. Another method: count times that each color is 
observed and assign unlikely colors to 
foreground
– Can work for repetitive motion, like a tree swaying 

in the breeze
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Augmented reality

• Insert and/or interact with object in scene
– Project by Karen Liu
– Responsive characters in AR
– KinectFusion

• Overlay information on a display
– Tagging reality
– HoloLens
– Google goggles
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http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/final_proj/www/karenliu/
http://www.youtube.com/watch?v=xEn7xH3s5y8&feature=related
https://www.microsoft.com/en-us/research/publication/kinectfusion-real-time-dynamic-3d-surface-reconstruction-and-interaction-2/
http://www.youtube.com/watch?v=agywuau0RHQ&feature=related
https://www.microsoft.com/en-us/hololens
http://www.google.com/mobile/goggles/


Adding fake objects to real video
Approach
1. Recognize and/or track points that give you a 

coordinate frame
2. Apply homography (flat texture) or perspective 

projection (3D model) to put object into scene

Main challenge: dealing with lighting, shadows, occlusion
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Information overlay

Approach
1. Recognize object that you’ve seen before
2. Possibly, compute its pose
3. Retrieve info and overlay

Main challenge: how to match reliably and 
efficiently?
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Today
How to quickly find images in a large database 
that match a given image region?
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Let’s start with interest points

Query Database

Compute interest points (or 
keypoints) for every image in 
the database and the query
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Simple idea
See how many keypoints
are close to keypoints in 
each other image

Lots of 
Matches

Few or No 
Matches

But this will be really, really slow!
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Key idea 1: “Visual Words”
• Cluster the keypoint descriptors

14



Key idea 1: “Visual Words”
K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 
select K centers 

2. Assign each 
point to nearest 
center

3. Compute new 
center (mean) 
for each cluster
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http://en.wikipedia.org/wiki/K-means_clustering


Key idea 1: “Visual Words”
K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 
select K centers 

2. Assign each 
point to nearest 
center

3. Compute new 
center (mean) 
for each cluster

Back to 2
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http://en.wikipedia.org/wiki/K-means_clustering


Kmeans: Matlab code
function C = kmeans(X, K)

% Initialize cluster centers to be randomly sampled points
[N, d] = size(X);
rp = randperm(N);
C = X(rp(1:K), :);

lastAssignment = zeros(N, 1);
while true

% Assign each point to nearest cluster center
bestAssignment = zeros(N, 1);
mindist = Inf*ones(N, 1);
for k = 1:K

for n = 1:N
dist = sum((X(n, :)-C(k, :)).^2);
if dist < mindist(n)

mindist(n) = dist;
bestAssignment(n) = k;

end
end

end

% break if assignment is unchanged  
if all(bestAssignment==lastAssignment), break; end;
lastAssignment = bestAssignmnet;

% Assign each cluster center to mean of points within it
for k = 1:K 

C(k, :) = mean(X(bestAssignment==k, :));
end

end
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K-means Demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


Key idea 1: “Visual Words”
• Cluster the keypoint descriptors
• Assign each descriptor to a cluster number
– What does this buy us?
– Each descriptor was 128 dimensional floating point, 

now is 1 integer (easy to match!)
– Is there a catch?
• Need a lot of clusters (e.g., 1 million) if we want points in 

the same cluster to be very similar
• Points that really are similar might end up in different 

clusters
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Key idea 1: “Visual Words”
• Cluster the keypoint descriptors
• Assign each descriptor to a cluster number
• Represent an image region with a count of these 

“visual words”
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Key idea 1: “Visual Words”
• Cluster the keypoint descriptors
• Assign each descriptor to a cluster number
• Represent an image region with a count of these 

“visual words”
• An image is a good match if it has a lot of the same 

visual words as the query region 
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Naïve matching is still too slow

Imagine matching 1,000,000 images, each with 
1,000 keypoints
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Key Idea 2: Inverse document file

• Like a book index: keep a list of all the words (keypoints) and 
all the pages (images) that contain them.

• Rank database images based on tf-idf measure.

tf-idf: Term Frequency – Inverse Document Frequency

# words in document

# times word 
appears in document

#  documents

#  documents that 
contain the word
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Fast visual search

“Scalable Recognition with a Vocabulary Tree”, Nister and Stewenius, CVPR 2006.

“Video Google”, Sivic and Zisserman, ICCV 2003
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Slide Slide Credit: Nister

110,000,000 Images in 5.8 Seconds
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Slide Slide Credit: Nister 26



Slide Slide Credit: Nister
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Slide Credit: Nister
Slide 28



Recognition with K-tree

Following slides by David Nister (CVPR 2006) 30
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Performance
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More words is better Improves
Retrieval

Improves
Speed

Branch factor
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Can we be more accurate?
So far, we treat each image as containing a “bag of words”, 
with no spatial information

a
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hWhich 
matches 
better?
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Can we be more accurate?

So far, we treat each image as containing a “bag of words”, 
with no spatial information

Real objects have consistent geometry
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Final key idea: geometric verification
• Goal: Given a set of possible keypoint matches, 

figure out which ones are geometrically 
consistent

How can we do this?
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Final key idea: geometric verification
RANSAC for affine transform
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Affine 
Transform

Randomly choose 3 
matching pairs

Estimate 
transformation

Predict remaining 
points and count 
“inliers”

Repeat N times:
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Application: Large-Scale Retrieval

[Philbin CVPR’07]

Query Results on 5K (demo available for 100K)
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Application: Image Auto-Annotation

Left:   Wikipedia image
Right: closest match from Flickr

[Quack CIVR’08]

Moulin Rouge

Tour Montparnasse Colosseum

Viktualienmarkt
Maypole

Old Town Square (Prague)
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Example Applications

Mobile tourist guide
• Self-localization
• Object/building recognition
• Photo/video augmentation

Aachen Cathedral

[Quack, Leibe, Van Gool, CIVR’08]
62



Video Google System

1. Collect all words within 
query region

2. Inverted file index to find 
relevant frames

3. Compare word counts
4. Spatial verification

Sivic & Zisserman, ICCV 2003

• Demo online at : 
http://www.robots.ox.ac.uk/~vgg/research/vgoogl
e/index.html

Query 
region

R
etrieved fram

es
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http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html


Summary: Uses of Interest Points

• Interest points can be detected reliably in different 
images at the same 3D location
– DOG interest points are localized in x, y, scale

• SIFT is robust to rotation and small deformation

• Interest points provide correspondence
– For image stitching
– For defining coordinate frames for object insertion
– For object recognition and retrieval
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Next class
• Opportunities of scale: stuff you can do with 

millions of images
– Texture synthesis of large regions
– Recover GPS coordinates
– Etc.
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