The image as a virtual stage

Computational Photography
Yuxiong Wang, University of Illinois

Today

- Inserting objects into *legacy* photos
 - Uses single-view geometry and image-based lighting concepts

Demo for using Blender

Rendering Synthetic Objects into Legacy Photographs

Kevin Karsch

Varsha Hedau

David Forsyth

Derek Hoiem

University of Illinois at Urbana-Champaign {karsch1,vhedau2,daf,dhoiem}@uiuc.edu

SIGGRAPH ASIA 2011

The polygonal mesh

- Discrete representation of a surface
 - Represented by vertices -> edges -> polygons (faces)

Insert these...

...into this

...into this

Inserting 3D objects into photographs

- Goal: Realistic insertion using a single LDR photo
- Arbitrary lighting environments

- Intuitive, quick and easy to create content
 - Homeplanning/redecoration
 - Movies (visual effects)
 - Video games

Challenges

- Estimate a physical scene model including:
 - Geometry
 - Surface properties
 - Lighting info
 - Camera parameters

Earlier approaches with scene access

Manual authoring

[Fournier et al. '93]

Earlier approaches with scene access

Manual authoring

[Fournier et al. '93]

Light probe, Inverse GI

[Debevec '98, Yu et al. '99]

Earlier approaches without scene access

Outdoor illumination

[Lalonde et al. '09]

Point source detection

[Wang and Samaras '03, Lopez-Moreno et al. '10]

System overview

Input image

Scene authoring

Object insertion

Scene synthesis

Overview of getting geometry and lighting

What the spatial layout provides

Extruded geometry, billboards enable occlusion

Box, supporting surfaces enable object placement

Box, extruded geometry, lighting enables *shadows*, *inter-reflections*, *caustics*

Camera geometry ensures correct perspective

Solving for camera viewpoint

Given 3 orthogonal VPs (at least two finite), can compute projection operator

Solving for camera viewpoint

Given 3 orthogonal VPs (at least two finite), can compute projection operator: intrinsic matrix

$$K = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} K^{-1} = \begin{bmatrix} 1/f & 0 & -u_0/f \\ 0 & 1/f & -v_0/f \\ 0 & 0 & 1 \end{bmatrix}$$

$$e_i = (1, 0, 0)^T, e_j = (0, 1, 0)^T, e_k = (0, 0, 1)^T$$

 $v_i = KRe_i, v_j = KRe_j, v_k = KRe_k$
 $(KR)^{-1}v_i = e^i, (KR)^{-1}v_j = e^j, (KR)^{-1}v_k = e^k$

$$e_i^T e_j = e_j^T e_k = e_i^T e_k = 0$$

$$v_i^T K^{-T} R R^{-1} K^{-1} v_j = v_j^T K^{-T} R R^{-1} K^{-1} v_k = v_i^T K^{-T} R R^{-1} K^{-1} v_k = 0$$

$$v_i^T K^{-T} K^{-1} v_j = v_j^T K^{-T} K^{-1} v_k = v_i^T K^{-T} K^{-1} v_k = 0$$

Solving for camera viewpoint

Given 3 orthogonal VPs (at least two finite), can compute projection operator

$$R = \begin{bmatrix} R_{1c} & R_{2c} & R_{3c} \end{bmatrix}$$

$$\lambda v_i = KRe_i \qquad e_i = [1, 0, 0]^T$$

$$R_{ic} = \lambda K^{-1} v_i$$

Projecting to image space

Given K, R, and a position in 3D, we can find its corresponding 2D image location:

$$\lambda p_2 = KRP_3$$

What about the reverse?

Given K, R, and a 2D position on the image, what do we know about its 3D location?

What about the reverse?

Given K, R, and a 2D position on the image, what do we know about its 3D location?

$$(KR)^{-1}p_2 = \lambda P_3$$

- Implies a line along which the 3D point lies
- Points on known surfaces can be localized

Modeling occlusions

User-defined boundary

- Tedious/inaccurate
- How can we make this better?

Segmentation with graph cuts

$$Energy(\mathbf{y}; \theta, data) = \sum_{i} \psi_{1}(y_{i}; \theta, data) \sum_{i, j \in edges} \psi_{2}(y_{i}, y_{j}; \theta, data)$$

Segmentation with graph cuts

$$Energy(\mathbf{y}; \theta, data) = \sum_{i} \psi_{1}(y_{i}; \theta, data) \sum_{i,j \in edges} \psi_{2}(y_{i}, y_{j}; \theta, data)$$

Refined segmentation

Spectral Matting

Spectral Matting

- Create NxN matrix describing neighboring pixel similarity (Laplacian matrix, L)
- Extract "smallest" eigenvectors of L
- Soft segmentation defined by linear combination of eigenvectors
 - Scribbles provide constraints to assign to foreground

Spectral Matting

Spectral matting

Spectral matting

Segmentations as "billboards"

Segmentations as "billboards"

Rendering via ray tracing

Insertion without relighting

...with relighting

Estimating light

- Hypothesize physical light sources in the scene
 - Physical CG representations of light sources found in the real world (area lights, etc)

- Visible sources in image marked by user
 - Refined to best match geometry and materials
- User annotates light shafts; direction vector
 - Shafts automatically matted and refined

Lighting estimation

Lighting estimation

Lighting estimation

Light refinement

Match original image to rendered image

Initial light parameters

Refined light parameters

Shadow matting via Guo et al. [2011]

Setting light shaft direction

Light shaft result

Inserting objects

- Representation of geometry, materials and lights is now compatible with 3D modeling software
- Two methods of insertion/interaction
 - Novice: image space editing
 - Professional: 3D modeling tools (e.g. Maya)
- Scene rendered with physically based renderer (e.g. LuxRender, Blender's Cycles)

Blender demo

Final composite

Additive differential technique [Debevec 1998]

composite = M.*R + (1-M).*I + (1-M).*(R-E)*c

I (background)

composite

R (rendered)

E (empty)

effect

multiplier

M (mask)

Putting it all together

Video: https://vimeo.com/28962540

Research directions

- Can we do better with
 - Multiple images?
 - Videos?
 - Depth?
- Better scene understanding?
- How to insert image fragments?

Fully Automated Scene Modeling

Karsch et al. 2014: http://vimeo.com/101866891

Summary

- We can accurately predict how a 3D object would look in a depicted scene by recovering
 - Viewpoint: camera matrix, single view geometry
 - Scene geometry: single-view geometry
 - Material: "intrinsic image approaches"
 - Lighting: solve for lights such that rendering reproduces image
- Next classes: interest points, matching and alignment, and stitching