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Today

• Inserting objects into legacy photos
– Uses single-view geometry and image-based lighting 

concepts

• Demo for using Blender
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SIGGRAPH ASIA 2011
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The polygonal mesh

• Discrete representation of a surface
– Represented by vertices -> edges -> polygons (faces)
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Insert these…
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…into this
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…into this
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Inserting 3D objects into photographs

• Goal: Realistic insertion 
using a single LDR photo

• Arbitrary lighting 
environments

• Intuitive, quick and easy   
to create content
– Home 

planning/redecoration
– Movies (visual effects)
– Video games 9



Challenges

• Estimate a physical scene 
model including:
– Geometry
– Surface properties
– Lighting info
– Camera parameters

Walls/floor

Table

Lights

Camera 10



Earlier approaches 
with scene access

[Fournier et al. ’93]

Manual authoring
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Manual authoring

[Debevec ’98, Yu et al. ‘99]

Light probe, Inverse GI

[Fournier et al. ’93]

Earlier approaches 
with scene access
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[Lalonde et al. ‘09]

Outdoor illumination

[Wang and Samaras ’03,
Lopez-Moreno et al. ‘10]

Point source detection

Earlier approaches 
without scene access
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System overview

Scene synthesis

Object insertionInput image

Scene authoring
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Overview of getting geometry and lighting
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Bounding geometry

Spatial Layout 
[Hedau et al. ’09]Remember Tour into the Picture?  

This is also a box model, but camera 
doesn’t have to face the back wall
- Three vanishing points
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Bounding geometry

Supporting geometry

Manual input

Spatial Layout 
[Hedau et al. ’09]
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Bounding geometry

Occluding geometry

Supporting geometry

Spectral 
matting[Levin et 

al. ’09]
Manual input

Spatial Layout 
[Hedau et al. ’09]
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Bounding geometry

Occluding geometry

Supporting geometry

Light sources Spectral 
matting[Levin et 

al. ’09]
Manual input

Manual input

Spatial Layout 
[Hedau et al. ’09]
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Textured billboard
(with transparency)Bounding cuboid

Extruded polygon

Area lights
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What the spatial layout provides

21



Extruded geometry, billboards enable occlusion
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Box, supporting surfaces enable object placement
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Box, extruded geometry, lighting enables shadows, 
inter-reflections, caustics
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Camera geometry ensures correct perspective
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Solving for camera viewpoint

Given 3 orthogonal VPs (at least two finite), can 
compute projection operator

!"# = %&'(

2D point in 
homogeneous 
coordinates

3D point in Cartesian coordinates

Intrinsic camera matrix Rotation matrix
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Solving for camera viewpoint
Given 3 orthogonal VPs (at least two finite), can 
compute projection operator: intrinsic matrix 

ei = (1, 0, 0)T , ej = (0, 0, 1)T , ek = (0, 0, 1)T

vi = KRei, vj = KRej , vk = KRek

(KR)�1vi = ei, (KR)�1vj = ej , (KR)�1vk = ek

eTi ej = eTj ek = eTi ek = 0

vTi K
�TRR�1K�1vj = vTj K

�TRR�1K�1vk = vTi K
�TRR�1K�1vk = 0

vTi K
�TK�1vj = vTj K

�TK�1vk = vTi K
�TK�1vk = 0

(0, 1, 0)T
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Solving for camera viewpoint

Given 3 orthogonal VPs (at least two finite), can 
compute projection operator 
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Projecting to image space

Given K, R, and a position in 3D, we can find its 
corresponding 2D image location:

!"# = %&'(
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What about the reverse?

Given K, R, and a 2D position on the image, what 
do we know about its 3D location?
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What about the reverse?

Given K, R, and a 2D position on the image, what 
do we know about its 3D location?

• Implies a line along which the 3D point lies
• Points on known surfaces can be localized

!" #$%& = ()*
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Modeling occlusions
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User-defined boundary

• Tedious/inaccurate
• How can we make this better?

34



Segmentation with graph cuts
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Segmentation with graph cuts
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Refined segmentation
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Spectral Matting
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Spectral Matting

• Create NxN matrix describing neighboring pixel similarity 
(Laplacian matrix, L)

• Extract “smallest” eigenvectors of L
• Soft segmentation defined by linear combination of 

eigenvectors
– Scribbles provide constraints to assign to foreground

[“Spectral Matting” Levin Rav-Acha Lischinski 2008]
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http://www.wisdom.weizmann.ac.il/mathusers/levina/papers/spectral-matting-levin-etal-pami08.pdf


Spectral Matting

image spectral components
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Spectral matting
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Spectral matting
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Segmentations as “billboards”
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Segmentations as “billboards”
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Rendering via ray tracing
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Insertion without relighting
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…with relighting
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Estimating light

• Hypothesize physical light sources in the scene
– Physical à CG representations of light sources 

found in the real world (area lights, etc)

• Visible sources in image marked by user
– Refined to best match geometry and materials

• User annotates light shafts; direction vector
– Shafts automatically matted and refined

48



Lighting estimation
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Actual light position

Lighting estimation
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User-initialized light position
Actual light position

Lighting estimation
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Light refinement

Geometry Reflectance

Input sources
Initial

Refined
sources

argmin
L

Erender(L)

+Eprior(L)

Match rendered 
image with input

Trust initial 
light parameters

Match original image to rendered image
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Initial light parameters
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Refined light parameters
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External light shafts
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Shaft bounding box

Source bounding box

External light shafts
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External light shafts
Shadow matting via Guo et al. [2011]
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Setting light shaft direction
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Shaft direction

External light shafts
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Light shaft result
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Inserting objects

• Representation of geometry, materials and 
lights is now compatible with 3D modeling 
software

• Two methods of insertion/interaction
– Novice: image space editing

– Professional: 3D modeling tools (e.g. Maya)

• Scene rendered with physically based renderer 
(e.g. LuxRender, Blender’s Cycles)
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Blender demo
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Final composite
Additive differential technique [Debevec 1998]

composite = M.*R + (1-M).*I + (1-M).*(R-E)*c 

composite

R (rendered) E (empty) M (mask)

I (background)

effect 
multiplier
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Putting it all together

Video: https://vimeo.com/28962540
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https://vimeo.com/28962540


Research directions

• Can we do better with
– Multiple images?
– Videos?
– Depth?

• Better scene understanding?
• How to insert image fragments?
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Fully Automated Scene Modeling

Karsch et al. 2014: http://vimeo.com/101866891
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http://vimeo.com/101866891


Summary

• We can accurately predict how a 3D object 
would look in a depicted scene by recovering
– Viewpoint: camera matrix, single view geometry
– Scene geometry: single-view geometry
– Material: “intrinsic image approaches”
– Lighting: solve for lights such that rendering 

reproduces image

• Next classes: interest points, matching and 
alignment, and stitching
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