Histograms and Color Balancing

“Empire of Light”, Magritte

Computational Photography
Yuxiong Wang, University of Illinois
Administrative stuff

• Project 1: due Friday
 – Part I: Hybrid Images
 – Part II: Enhance Contrast/Color

• Start thinking about final project topics and find teammates
Review of last class

Possible factors: albedo, shadows, texture, specularities, curvature, lighting direction
Today’s class

• How can we represent color?
• How do we adjust the intensity of an image to improve contrast, aesthetics?
Human eye cone responsivity

![Graph showing the normalized cone response (linear energy) vs. wavelength (nm). The graph indicates the sensitivity of S, M, and L cones across different wavelengths.](image-url)
Color spaces: RGB

Default color space

Some drawbacks
- Strongly correlated channels
- Non-perceptual

Trichromacy and CIE-XYZ

Perceptual equivalents with RGB

Perceptual equivalents with CIE-XYZ

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix}
0.49 & 0.31 & 0.20 \\
0.17697 & 0.81240 & 0.01063 \\
0.00 & 0.01 & 0.99
\end{bmatrix} \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]
Color Space: CIE-XYZ

\[x = \frac{X}{X + Y + Z} \]

\[y = \frac{Y}{X + Y + Z} \]

RGB portion is in triangle
Perceptual uniformity
Color spaces: CIE L*a*b*

“Perceptually uniform” color space

Luminance = brightness
Chrominance = color
If you had to choose, would you rather go without luminance or chrominance?
If you had to choose, would you rather go without luminance or chrominance?
Most information in intensity

Only color shown – constant intensity
Most information in intensity

Only intensity shown – constant color
Most information in intensity

Original image

Image from Phillip Greenspun, used with permission
Color spaces: HSV

Intuitive color space

H (S=1,V=1)
S (H=1,V=1)
V (H=1,S=0)
Color spaces: YCbCr

Fast to compute, good for compression, used by TV

\[Y' = 16 + \frac{65.738 \cdot R'_D}{256} + \frac{129.057 \cdot G'_D}{256} + \frac{25.064 \cdot B'_D}{256} \]

\[C_B = 128 + \frac{-37.945 \cdot R'_D}{256} + \frac{74.494 \cdot G'_D}{256} + \frac{112.439 \cdot B'_D}{256} \]

\[C_R = 128 + \frac{112.439 \cdot R'_D}{256} + \frac{94.154 \cdot G'_D}{256} + \frac{18.285 \cdot B'_D}{256} \]
Color balancing

Unprocessed Color (JPL Web site)
(raw data from Mars, uncalibrated)

“Natural” Color
(uses calibrated data)

“White Balanced” Color
(Assumes something in the scene is white)
Contrast enhancement

http://en.wikipedia.org/wiki/Histogram_equalization
Important ideas

• Typical images are gray on average; this can be used to detect distortions

• Larger differences are more visible, so using the full intensity range improves visibility

• It’s often easier to work in a non-RGB color space
Color balancing via linear adjustment

• Simple idea: multiply R, G, and B values by separate constants

\[
\begin{bmatrix}
\tilde{r} \\
\tilde{g} \\
\tilde{b}
\end{bmatrix} =
\begin{bmatrix}
\alpha_r & 0 & 0 \\
0 & \alpha_g & 0 \\
0 & 0 & \alpha_b
\end{bmatrix}
\begin{bmatrix}
r \\
g \\
b
\end{bmatrix}
\]

• How to choose the constants?
 – “Gray world” assumption: average value should be gray
 – White balancing: choose a reference as the white or gray color
 – Better to balance in camera’s RGB (linear) than display RGB (non-linear)
Tone Mapping

• Typical problem: compress values from a high range to a smaller range
 – E.g., camera captures 12-bit linear intensity and needs to compress to 8 bits
Example: Linear display of HDR

Scaled for brightest pixels

Scaled for darkest pixels
Global operator (Reinhart et al.)

• Simple solution: map to a non-linear range of values

\[L_{\text{display}} = \frac{L_{\text{world}}}{1 + L_{\text{world}}} \]
Reinhart Operator

Darkest 0.1% scaled to display
Point Processing: apply a function to each pixel intensity to map it to a new value
Gamma adjustment

\[i_{out} = i_{in}^\gamma \]

\(\gamma = 0.5 \)

\(\gamma = 1 \)

\(\gamma = 2 \)
Matlab example
Histogram equalization

- Basic idea: reassign values so that the number of pixels with each value is more evenly distributed
- Histogram: a count of how many pixels have each value

\[h_i = \sum_{j \in \text{pixels}} 1(p_j == i) \]

- Cumulative histogram: count of number of pixels less than or equal to each value

\[c_i = c_{i-1} + h_i \]
Histogram is count of elements that have a particular value or range of values

\[A = [1 \ 1 \ 2 \ 3 \ 3 \ 3 \ 5 \ 6] \]
\[H = \text{hist}(A, 1:6) \]
\[H = [2 \ 1 \ 3 \ 0 \ 1 \ 1] \]
\[C = \text{cumsum}(H) \]
\[C = [2 \ 3 \ 6 \ 6 \ 7 \ 8] \]

\[B = [5 \ 6 \ 6 \ 6 \ 8 \ 8 \ 9] \]
\[H = \text{hist}(B, 5:9) \]
\[H = ? \]
\[C = ? \]
Image Histograms

Cumulative Histograms

- original
- gamma = 2
- gamma = 0.75
- equalized
Histogram Equalization
Algorithm for global histogram equalization

Goal: Given image with pixel values $0 \leq p_j \leq 255$, $j = 0..N$

specify function $f(i)$ that remaps pixel values, so that the new values are more broadly distributed

1. Compute cumulative histogram: $c(i), i = 0..255$

 $h(i) = \sum_{j \in \text{pixels}} 1(p_j == i), c(i) = c(i - 1) + h(i)$

2. $f(i) = \alpha \cdot \frac{c(i)}{N} \cdot 255 + (1 - \alpha) \cdot i$

 – Blends between original image and image with equalized histogram
Locally weighted histograms

- Compute cumulative histograms in non-overlapping $M \times M$ grid
- For each pixel, interpolate between the histograms from the four nearest grid cells

Figure from Szeliski book (Fig. 3.9)
Pixel (black) is mapped based on interpolated value from its cell and nearest horizontal, vertical, diagonal neighbors
Application of adaptive histogram equalization to color image

rgb2hsv

Locally Adaptive Histogram Equalization of “v” channel

hsv2rgb
Other issues

• Dealing with color images
 – Often better to split into luminance and chrominance to avoid unwanted color shift

• Manipulating particular regions
 – Can use mask to select particular areas for manipulation

• Useful Python functions/modules
 – skimage.color: color conversion, e.g. rgb2hsv
 – numpy: histogram, cumsum
Matlab Example 2
Things to remember

• Familiarize yourself with the basic color spaces: RGB, HSV, Lab

• Simple auto contrast/color adjustments: gray world assumption, histogram equalization

• When improving contrast in a color image, often best to operate on luminance channel
Next class: texture synthesis and transfer